API Reference
This page contains the full documentation for each function of the Studio Data SDK. Use the sidebar to navigate to any function.
Sharing Functions
This section contains detailed reference documentation for the Data SDK's sharing functions.
To view each function with a brief description and an example, visit the sharing page.
get_permissions
Get permissions for a resource stored in your Studio workspace.
Permissions include "viewer"
and "editor"
, and can be modified for individuals (via emails) or your entire organization via the set-permissions
functions.
Method
data_sdk.get_permissions(
self,
*,
resource_type: ResourceType,
resource_id: UUID | str,
) -> CategorizedPermissions:
fsq-data-sdk get-permissions
--resource-type <Type of resource, map, dataset, etc.>
--resource-id <Resource UUID>
GET https://data-api.foursquare.com/v1/permissions/map/ HTTP/1.1
GET https://data-api.foursquare.com/v1/permissions/dataset/ HTTP/1.1
Response
A list of categorized permissions for both the organization and any other users (via email).
{
"organization": "viewer",
"users": [
{
"email": "[email protected]",
"permission": "editor"
},
{
"email": "[email protected]",
"permission": "viewer"
}
]
}
Examples
data_sdk.get_permissions(
resource_type = "map",
resource_id = "[UUID]"
)
fsq-data-sdk get-permissions
--resource-type "map"
--resource-id "[UUID]"
curl GET 'https://data-api.foursquare.com/v1/permissions/map/1l9e5c4e-2f3-4f24-19fb-7e7514b43c44' --header 'Authorization: Bearer <token>'
curl GET 'https://data-api.foursquare.com/v1/permissions/dataset/1l9e5c4e-2f3-4f24-19fb-7e7514b43c44' --header 'Authorization: Bearer <token>'
set_permissions
Set permissions for a resource stored in your Studio workspace.
Permissions include "viewer"
and "editor"
, and can be modified for individuals (via emails) or your entire organization. To remove permissions, simply omit them from set_permissions
.
Method
data_sdk.set_permissions(
self,
*,
resource_type: ResourceType,
resource_id: UUID | str,
permissions: CategorizedPermissions | Dict,
) -> None:
fsq-data-sdk set-permissions
--resource-type <Type of resource, map, dataset, etc.>
--resource-id <Resource UUID>
--organization <viewer or editor>
--viewer <User (email) with 'viewer' permissions>
--editor <User (email) with 'editor' permissions>
POST https://data-api.foursquare.com/v1/permissions/ HTTP/1.1
Body
The body of the request should contain the permissions encoded as a JSON blob.
--data-raw '{
"resourceType": "map",
"resourceId": "1l9e5c4e-2f3-4f24-19fb-7e7514b43c44",
"permissions": {
"users": [
{
"email": "[email protected]",
"permission": "editor"
}, {
"email": "[email protected]",
"permission": "view"
}
]
}
}'
Response
If successful, you will receive a message indicating which records were created, updated, and removed.
{
"message": "Permissions set successfully (2 created, 0 updated, 0 removed)."
}
If certain emails don't have a Studio account associated with them, they will be skipped.
{
"message": "Permissions set successfully (4 created, 2 updated, 1 removed). Some emails were skipped because there is no account associated with them: [email protected]."
}
Collaborators can create an account by visiting https://studio.foursquare.com/. If you are looking to collaborate with coworkers, we recommend you invite them into your organization.
Examples
data_sdk.set_permissions(
resource_type = "map",
resource_id = "[UUID]"
permissions = {
"organization": "viewer",
"users": [
{
"email": "[email protected]",
"permission": "editor"
},
{
"email": "[email protected]",
"permission": "viewer
}
]
}
)
fsq-data-sdk set-permissions
--resource-type "map"
--resource-id "[UUID]"
--editor [email protected]
--editor [email protected]
--viewer [email protected]
--viewer [email protected]
--editor [email protected]
curl POST 'https://data-api.foursquare.com/v1/permissions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <token>' \
--data-raw '{
"resourceType": "map",
"resourceId": "1l9e5c4e-2f3-4f24-19fb-7e7514b43c44",
"permissions": {
"users": [
{
"email": "[email protected]",
"permission": "editor"
}, {
"email": "[email protected]",
"permission": "view"
}
]
}
}'
Map Functions
This section contains detailed reference documentation covering the Data SDK's map functions.
To view each function with a brief description and an example, visit the map functions documentation.
create_map
Create a map record from JSON, including the map configuration and list of associated datasets.
Method
data_sdk.create_map(
name: Optional[str] = None,
description: Optional[str] = None,
map_state: Optional[MapState] = None,
datasets: Optional[Iterable[Union[Dataset, UUID, str0]]])
fsq-data-sdk create-map \
--name <name> \
--description <description> \
--map-state <path> \
--dataset-ids <uuid1>,<uuid2>
POST https://data-api.foursquare.com/v1/maps/ HTTP/1.1
Body
The body of the request should be the JSON data for the map record you want to create. All properties are optional, and unknown properties or those which cannot be updated will be ignored. In order to refer to datasets in the map state, they must be included in the datasets
list, which can be either a list of dataset UUIDs or a list of objects in the form {"id": "string"}
.
Response
Updated map record
{
"id": "string",
"name": "string",
"createdAt": "2020-11-03T21:27:14.000Z",
"updatedAt": "2020-11-13T01:44:07.000Z",
"description": "string",
"privacy": "private",
"permission": "editor",
"latestState": {
"id": "string",
"data": MapConfig
},
"datasets": [
{
"id": "string",
"name": "string",
"createdAt": "2020-11-10T18:09:39.000Z",
"updatedAt": "2020-11-10T18:09:39.000Z",
"privacy": "private",
"permission": "editor",
"isValid": true
}
]
}
Example
unfolded_map = data_sdk.create_map(
name="map name",
description="map description",
map_state={"id": "<uuid>", "data": {...}},
datasets=['<uuid1>', '<uuid2>'])
fsq-data-sdk create-map \
--name "map name" \
--description "map description" \
--map-state /path/to/map-state.json \
--dataset-ids <uuid1>,<uuid2>
curl -X POST https://data-api.foursquare.com/v1/maps/ \
-H 'Authorization: Bearer <token>' \
-H 'Content-Type: application/json' \
--data-binary '@/path/to/my_map.json'
copy_map
Creates a copy of an existing map, duplicating its layers and map state.
The user must choose whether to copy the target map's datasets or point to them as a data source.
Method
data_sdk.copy_map(
map: Union[Map, str, UUID],
copy_datasets: bool,
name: Optional[str] = None
) -> Map:
fsq-data-sdk clone-map \
--map-id <map-id> \
--clone-datasets/--no--clone--datasets \
--name <name>
curl --request POST \
--url https://data-api.foursquare.com/v1/maps/map_id/copy \
--header 'Authorization: Bearer <Token>' \
--header 'accept: application/json' \
--header 'content-type: application/json' \
--data '
{
"copyDatasets": true,
"name": "map_copy"
}
'
Body
Specify copyDatasets
option boolean to toggle whether to also copy datasets during the map copy operation. You can also provide a name for the new copy of the map with the name
field.
Positional Parameters
Parameter | Type | Description |
---|---|---|
map | Map , string , or UUID | The map record to copy. Can be a Map object representing a created map or a string /UUID id pointing to an existing map. |
Keyword Parameters
Parameter | Type | Description |
---|---|---|
copy_datasets | bool | Required. If true , copy all underlying datasets of the target map. |
name | string | The name to give the copied map. Default: "Copy of {source_map_name}" |
Response
{
"id": "string",
"name": "string",
"createdAt": "2020-11-03T21:27:14.000Z",
"updatedAt": "2020-11-13T01:44:07.000Z",
"description": "string",
"privacy": "private",
"permission": "editor",
"latestState": {
"id": "string",
"data": MapConfig
},
"datasets": [
{
"id": "string",
"name": "string",
"createdAt": "2020-11-10T18:09:39.000Z",
"updatedAt": "2020-11-10T18:09:39.000Z",
"privacy": "private",
"permission": "editor",
"isValid": true
}
]
}
Examples
unfolded_map = data_sdk.copy_map(
map = "<uuid>",
copy_datasets = True,
name = "My Copied Map Example")
fsq-data-sdk clone-map \
--map-id "<uuid>" \
--clone-datasets/--no--clone--datasets \
--name "My Cloned Map Example"
curl -X POST https://data-api.foursquare.com/v1/maps/<uuid>/clone \
-H 'Authorization: Bearer <token>
replace_dataset
Replace a dataset on a map, updating the visualization with the data from the new dataset.
By default, this function expects a dataset with an identical schema and will error if the new dataset is not compatible with the old one. To override the error, set force = True
. To use strict type checking, set strict=True
Method
data_sdk.replace_dataset(
map: Union[Map, str, uuid.UUID],
dataset_to_replace: Union[Dataset, str, uuid.UUID],
dataset_to_use: Union[Dataset, str, uuid.UUID],
force: bool = False
strict: bool = False
) ‑> Map
fsq-data-sdk replace-dataset \
--map-id, \
--dataset-to-replace-id \
--dataset-to-use-id
--force
--strict
POST https://data-api.foursquare.com/v1/maps/<uuid>/datasets/replace HTTP/1.1
Positional Parameters
Parameter | Type | Description |
---|---|---|
map | Map , string , or UUID | Required. The map record containing the dataset to replace. Can be a Map object representing a created map or a string /UUID id pointing to an existing map. |
dataset_to_replace | Dataset , string , or UUID | Required. The dataset to replace. Can be a Dataset object representing a dataset or a string /UUID id pointing to an existing dataset. |
dataset_to_use | Dataset , string , or UUID | Required. The new dataset to use in the replace operation. Can be a Dataset object representing a dataset or a string /UUID id pointing to an existing dataset. |
Keyword Parameters
Parameter | Type | Description |
---|---|---|
force | bool | If True , force the dataset replacement operation, overriding any errors caused by mismatched schemas. Default: False |
strict | bool | If True , use strict typechecking and throw an error if fields don't have the same type. Default: False |
Response
The Map
object that was operated on.
{
"id": "string",
"name": "string",
"createdAt": "2020-11-03T21:27:14.000Z",
"updatedAt": "2020-11-13T01:44:07.000Z",
"description": "string",
"privacy": "private",
"permission": "editor",
"latestState": {
"id": "string",
"data": MapConfig
},
"datasets": [
{
"id": "string",
"name": "string",
"createdAt": "2020-11-10T18:09:39.000Z",
"updatedAt": "2020-11-10T18:09:39.000Z",
"privacy": "private",
"permission": "editor",
"isValid": true
}
]
}
Examples
data_sdk.replace_dataset(
map_id = "38bbed5-eb0e-4c65-8bcc-cc173dc497qb",
dataset_to_replace = "750dfn07-f8b9-4d37-b698-bacd1d8e6156",
dataset_to_use = "c9ff8f3e-8821-4k68-b7fc-94cb95fe65e2"
)
curl -X POST https://data-api.foursquare.com/v1/maps/<uuid>/datasets/replace \
-H 'Authorization: Bearer <token>' \
curl --request POST \
--url https://data-api.foursquare.com/v1/maps/<uuid>/datasets/replace \
--header 'Authorization: Bearer <Token>' \
--header 'accept: application/json' \
--header 'content-type: application/json' \
--data '
{
"datasetToReplaceId": "dataset_1",
"datasetToUseId": "dataset_2",
"force": false,
"strict": false
}
'
get_map_by_id
Get a map record by id.
unfolded_map = data_sdk.get_map_by_id(uuid: str) -> Map
fsq-data-sdk get-map <uuid>
GET https://data-api.foursquare.com/v1/maps/<uuid> HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
id | string | The UUID of the map record to get. |
Response
Map record, including the full map state and a list of associated datasets. The map state (the configuration of the map styles, layers, etc) is omitted in the sample record below due to its complexity.
{
"id": "string",
"name": "string",
"createdAt": "2020-11-03T21:27:14.000Z",
"updatedAt": "2020-11-13T01:44:07.000Z",
"description": "string",
"privacy": "private",
"permission": "editor",
"latestState": {
...
},
"datasets": [
{
"id": "string",
"name": "string",
"createdAt": "2020-11-10T18:09:39.000Z",
"updatedAt": "2020-11-10T18:09:39.000Z",
"privacy": "private",
"permission": "editor",
"isValid": true
}
]
}
Example
unfolded_map = data_sdk.get_map_by_id("<uuid>")
fsq-data-sdk get-map <uuid>
curl -X GET https://data-api.foursquare.com/v1/maps/<uuid> \
-H 'Authorization: Bearer <token>'
update_map
Update a map record, including the latest state and list of associated datasets.
update_map(
map_id: Union[Map, UUID, str],
name: Optional[str] = None,
description: Optional[str] = None,
map_state: Optional[MapState] = None,
datasets: Optional[Iterable[Union[Dataset, UUID, str]]] = None) -> Map:
fsq-data-sdk update-map \
--map-id <uuid> \
--name <name> \
--description <description> \
--map-state <path> \
--dataset-ids <uuid1>,<uuid2>
PUT https://data-api.foursquare.com/v1/maps/{id} HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
id | string | The UUID of the map record to update. |
name | string | A new name for the map. |
description | string | A new description for the map. |
map_state | MapState | The latest MapState of the Studio map object. |
datasets | Dataset list | A list of Dataset objects associated with the map. |
Body
The body of the request should be the JSON data for the map record you want to update. All properties are optional, and unknown properties or those which cannot be manually updated will be ignored. In order to refer to datasets in the map state, they must be included in the datasets
list, which can be either a list of dataset UUIDs or a list of objects in the form {"id": <uuid>}
.
Response
Updated map record
{
"id": "string",
"name": "string",
"createdAt": "2020-11-03T21:27:14.000Z",
"updatedAt": "2020-11-13T01:44:07.000Z",
"description": "string",
"privacy": "private",
"permission": "editor",
"latestState": {
"id": "string",
"data": MapConfig
},
"datasets": [
{
"id": "string",
"name": "string",
"createdAt": "2020-11-10T18:09:39.000Z",
"updatedAt": "2020-11-10T18:09:39.000Z",
"privacy": "private",
"permission": "editor",
"isValid": true
}
]
}
Example
data_sdk.update_map(
map_id = map.id,
map_state = {
"id": map.latest_state.id,
"data": map.latest_state.data
}
)
fsq-data-sdk update-map \
--map-id "map-uuid" \
--name "new name" \
--description "new description" \
--map-state map-state.json \
--dataset-ids <uuid1>,<uuid2>
curl -X PUT https://data-api.foursquare.com/v1/maps/<uuid> \
-H 'Authorization: Bearer <token>' \
-H 'Content-Type: application/json' \
--data-binary '@/path/to/my_map.json'
delete_map
Delete a map record by id. This will not delete datasets associated with the map.
data_sdk.delete_map(uuid: str) -> None
fsq-data-sdk delete-map <uuid>
DELETE https://data-api.foursquare.com/v1/maps/<uuid> HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
id | string | The UUID of the map record to delete. |
Response
A message indicating if deletion was successful.
{
"message": "string"
}
Example
# List maps on account
maps = data_sdk.list_maps()
# Select map, then delete
map_to_delete = maps[0]
data_sdk.delete_map(map)
fsq-data-sdk delete-map <uuid>
curl -X GET https://data-api.foursquare.com/v1/maps/<uuid> \
-H 'Authorization: Bearer <token>'
list_maps
Get all map records for the authenticated user.
maps = data_sdk.list_maps()
fsq-data-sdk list-maps
GET https://data-api.foursquare.com/v1/maps HTTP/1.1
Get all map records for the organization of the authenticated user.
org_maps = data_sdk.list_maps(organization=True)
fsq-data-sdk list-maps --organization
GET https://data-api.foursquare.com/v1/maps/for-organization HTTP/1.1
Named Parameters
Parameter | Type | Description |
---|---|---|
organization | boolean | If True , list map records for organization of authenticated user. |
Response
List of map records.
{
"items": [
{
"id": "string",
"name": "string",
"createdAt": "2020-11-03T21:27:14.000Z",
"updatedAt": "2020-11-13T01:44:07.000Z",
"description": "",
"privacy": "private",
"permission": "editor"
}
]
}
For non-enterprise users, organization=True
will cause the request to fail with:
403: Insufficient permission level to perform this action
Example
maps = data_sdk.list_maps()
fsq-data-sdk list-maps
curl -X https://data-api.foursquare.com/v1/maps -H 'Authorization: Bearer <token>'
Data Functions
This section contains detailed reference documentation covering the Data SDK's dataset functions.
To view each function with a brief description and an example, visit the data functions documentation.
upload_file
Create a dataset from a data upload.
# upload a file
data_sdk.upload_file(
self,
file: Union[BinaryIO, str, Path],
name: Optional[str] = None,
*,
dataset: Optional[Union[Dataset, str, UUID]] = None,
media_type: Optional[Union[str, MediaType]] = None,
description: Optional[str] = None,
chunk_size: int = 256 * 1024,
progress: bool = False,
) -> Dataset:
# upload pandas DataFrame or geopandas GeoDataFrame
data_sdk.upload_dataframe(
self,
df: Union["pd.DataFrame", "gpd.GeoDataFrame"],
name: Optional[str] = None,
index: bool = True,
**kwargs: Any,
) -> Dataset:
fsq-data-sdk upload-file --name <name> --desc <description> --media-type <media_type> <path>
POST https://data-api.foursquare.com/v1/datasets/data?name={name}&description={description}
HTTP/1.1
Parameters
HTTP API
Parameter | Type | Description |
---|---|---|
name | string | Name of the dataset to create. |
description | string | Optional. Description of the dataset to create. |
Headers
Header | Description |
---|---|
Content-Type | Required. MIME type of data you are uploading, e.g. text/csv or application/json |
Body
The body of the request should be the binary data you want to upload, in a format matching the supplied Content-Type.
Python
Use upload_file
for uploading data files.
upload_file
upload_file
Positional Arguments
Argument | Type | Description |
---|---|---|
file | string of a path, or file object | Path or file object to use for uploading data. |
name | string | Optional. Name of the dataset to create. |
Keyword Arguments
Argument | Type | Description |
---|---|---|
dataset | Dataset , str , UUID | Optional. If provided, dataset whose data should be updated. Otherwise, creates a new dataset. |
media_type | string or MediaType | Optional. File type (e.g. MediaType.CSV or text/csv ). By default, tries to infer media type from file name. |
description | string | Optional. Description of the dataset to create. |
chunk_size | int | Optional. Number of bytes to upload at a time. Used for progressbar . Default: 256 * 1024 |
progress | bool | Optional. When true, display a progress bar. |
Example
# upload a file
data_sdk.upload_file(
file='new_file.csv',
name='Dataset name',
media_type=MediaType.CSV,
description='Dataset description')
# upload pandas or geopandas dataframe
data_sdk.upload_dataframe(
dataframe,
name='Dataset name',
description='Dataset description')
fsq-data-sdk upload-file \
--name "Dataset name" \
--desc "Dataset description" \
--media-type text/csv \
new_file.csv
curl -X POST https://data-api.foursquare.com/v1/datasets/data?name=My+Dataset \
-H 'Authorization: Bearer <token>' \
-H 'Content-Type: text/csv' \
--data-binary '@/path/to/my_dataset.csv'
upload_dataframe
You can upload pandas/geopandas dataframes directly to the Studio cloud, creating a new dataset.
Argument | Type | Description |
---|---|---|
df | pandas.DataFrame or geopandas.DataFrame | Either a Pandas DataFrame or a GeoPandas GeoDataFrame to upload to Studio. |
name | string | Name of dataset record. Required if creating a new dataset record (instead of updating an existing dataset record). |
index | boolean | Optional. If True , include row names in output. Default: True |
Response
Created dataset record
{
"id": "string",
"name": "string",
"createdAt": "2021-02-04T00:17:38.652Z",
"updatedAt": "2021-02-04T00:17:38.652Z",
"description": "string",
"isValid": true
}
Example
data_sdk.upload_dataframe(
dataframe,
name='Dataset name',
description='Dataset description')
create_external_dataset
Create an external dataset record referencing a dataset by URL. External datasets will be loaded from source every time, and will not be stored in our system. If the URL references a cloud storage object, e.g. with the s3:// or gcs:// protocol, and that URL requires authentication, you can include a data connector id referencing a connector with appropriate privileges to read that object.
Note that this feature is in beta and may not work for all datasets.
Method
create_external_dataset(
self,
*,
name: str,
description: str | None = None,
source: str,
connector: DataConnector | UUID | str | None = None,
) -> Dataset:
fsq-data-sdk create-external-dataset \
--source <Source URL of the dataset> \
--name <Name of the new dataset> \
--description <Description of the new dataset> \
--connector-id <Id of optional Data Connector to use>
POST https://data-api.foursquare.com/v1/datasets/ HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
source | string | Required. The source URL of the dataset. |
name | string | Required. THe name of the dataset. |
description | string | Description for the dataset record. |
connector | string | ID of an (optional) associated data connector, for cloud storage URLs. |
Body
External dataset parameters encoded as a JSON blob.
--data '{
"name": "My S3 Dataset",
"type": "externally-hosted",
"metadata": {
"source": "s3://my-bucket/path/to/data.parquet"
},
"dataConnectionId": "<SOME_ID>"
}'
Response
New dataset
record.
Examples
data_sdk.create_external_dataset(
name = "test-external-dataset",
description = "my external dataset",
source = "https://s3data.example.com/data-source",
connector = "<data-connector-uuid>"
)
fsq-data-sdk create-external-dataset \
--source "test-external-dataset" \
--name "my external dataset", \
--description "https://s3data.example.com/data-source" \
--connector-id "<data-connector-uuid>"
curl POST 'https://data-api.foursquare.com/catalog/v1/datasets' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer <TOKEN>' \
--data
'{
"name": "My S3 Dataset",
"type": "externally-hosted",
"metadata": {
"source": "s3://my-bucket/path/to/data.parquet"
},
"dataConnectionId": "<SOME_ID>"
}'
create_query_dataset
Create a dataset from a query.
create_query_dataset(
self,
connector: DataConnector | UUID | str,
query: str,
name: str,
description: str | None = None,
) -> Dataset:
fsq-data-sdk create-query-dataset --connector-id <connector uuid> --query <SQL query to use> --name <name for the new queried dataset> --description <description of the queried dataset>
POST https://data-api.foursquare.com/v1/datasets/data-query HTTP/1.1
Parameters
Parameter | Description |
---|---|
connector | Required. The data connector to use, or its UUID. |
query | Required. The SQL query. |
name | Name of the dataset record. |
description | Description for the dataset record. |
Response
The newly created dataset
object.
Examples
create_query_dataset(query_dataset.id, "select * from table;", "query-dataset", "sample-description")
fsq-data-sdk create-query-dataset --connector-id <connector uuid> --query <SQL query to use> --name <name for the new queried dataset> --description <description of the queried dataset>
POST https://data-api.foursquare.com/v1/datasets/data-query HTTP/1.1
execute_query
Execute a query against a data connector, returning a dataframe with the results of the query, or None
of the output was written to a file.
execute_query(
self,
connector: DataConnector | UUID | str,
query: str,
output_file: str | None = None,
output_format: QueryOutputType | str | None = None,
) -> pd.DataFrame | None:
fsq-data-sdk execute-query --connector-id <connector uuid> --query <SQL query to use>
POST https://data-api.foursquare.com/v1/query/gateway/data-queries HTTP/1.1
Parameters
Parameter | Description |
---|---|
connector | Required. The data connector to use, or its UUID. |
query | Required. The SQL query. |
output_file | The path to write the query output to. |
output_format | The format in which to write the output. |
Response
A dataframe containing the results of the query, or None
if the output was written to a file.
Example
df = data_sdk.execute_query(
example_data_connector.id,
"select * from table;"
)
fsq-data-sdk execute-query --connector-id <connector uuid> --query <SQL query to use>
POST https://data-api.foursquare.com/v1/query/gateway/data-queries HTTP/1.1
get_dataset_by_id
Retrieve a dataset metadata record in JSON format.
data_sdk.get_dataset_by_id(dataset: Union[Dataset, str, UUID]) -> None
fsq-data-sdk get-dataset --dataset-id <uuid>
GET https://data-api.foursquare.com/v1/datasets/<uuid> HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
dataset | dataset object or string | dataset object or UUID of the dataset record to retrieve. |
Response
Dataset record
{
"id": "string",
"name": "string",
"createdAt": "2021-02-04T00:17:38.652Z",
"updatedAt": "2021-02-04T00:17:38.652Z",
"description": "string",
"isValid": true
}
Example
# List and select dataset
datasets = data_sdk.list_datasets()
dataset = datasets[0]
# Get dataset record
data_sdk.get_dataset_by_id(dataset)
fsq-data-sdk get-map <uuid>
curl -X GET https://data-api.foursquare.com/v1/datasets/<uuid> \
-H 'Authorization: Bearer <token>'
download_dataset
Download data from a dataset record by id.
data_sdk.download_dataset(
dataset: Union[Dataset, str, UUID],
output_file: Optional[Union[BinaryIO, str, Path]] = None) -> Optional[bytes]
data_sdk.download_dataframe(
dataset: Union[Dataset, str, UUID]) -> Union[pandas.DataFrame, geopandas.GeoDataFrame]
fsq-data-sdk download-dataset --dataset-id <uuid> --output-file <path>
GET https://data-api.foursquare.com/v1/datasets/<uuid>/data HTTP/1.1
Parameters
download_dataset
download_dataset
Parameter | Type | Description |
---|---|---|
dataset | dataset object or string | dataset object or UUID of the dataset record to download. |
output_file | string of a path, or file object | If provided, a path or file object to write dataset's data to. Otherwise will return a bytes object with the dataset's data. |
download_dataframe
download_dataframe
Parameter | Type | Description |
---|---|---|
dataset | dataset object or string | dataset object or UUID of the dataset record to download. |
Response
download_dataset
download_dataset
If output_file
was provided, returns None
and writes data to the provided file. Otherwise, returns a bytes
object with the dataset's data.
download_dataframe
download_dataframe
Returns either a pandas DataFrame
or a geopandas GeoDataFrame
. If the original dataset was a CSV file, a pandas DataFrame
will be returned. If it was a GeoJSON file, a geopandas GeoDataFrame
will be returned.
Example
datasets = data_sdk.list_datasets()
dataset = datasets[0]
# download to local file
data_sdk.download_dataset(dataset, output_file='output.csv')
# download to buffer
buffer = data_sdk.download_dataset(dataset)
# download to a dataframe
df = data_sdk.download_dataframe(dataset)
fsq-data-sdk download-dataset --dataset-id <uuid> --output-file output.csv
curl -X GET https://data-api.foursquare.com/v1/datasets/<uuid> \
-H 'Authorization: Bearer <token>'
update_dataset
Update a dataset record, including the underlying data, and metadata such as name or description.
update_dataset(
dataset_id: Dataset | str | UUID,
name: str | None = None,
description: str | None = None,
file: BinaryIO | str | Path | None = None,
media_type: str | MediaType | None = None,
**kwargs: Any,
) -> Dataset:
fsq-data-sdk update-dataset \
--dataset-id <id> \
--media-type <media_type> \
--file <path> \
--name <name> \
--description <description>
PUT https://data-api.foursquare.com/v1/datasets/{id}/data HTTP/1.1
PUT https://data-api.foursquare.com/v1/datasets/{id} HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
dataset_id | string | The UUID of the dataset record to update. |
name | string | A new name for the dataset. |
description | string | A new description for the dataset. |
file | string of a path, or file object | The new data to use for the dataset. |
media_type | string | The media type of the new data |
Body
There are two HTTP endpoints called by the function. For the PUT /datasets/{id}/data
endpoint to update the dataset data, the body of the request should be the binary data you want to upload, in a format matching the supplied Content-Type
header.
For the PUT datasets/{id}
endpoint to update the dataset metadata, the request should be new metadata in JSON format, with the appropriate Content-Type
header.
Response
Updated dataset record
{
"id": "string",
"name": "string",
"createdAt": "2021-02-04T00:17:38.652Z",
"updatedAt": "2021-02-04T00:17:38.652Z",
"description": "string",
"isValid": true
}
Example
data_sdk.update_dataset(
dataset,
name='New name'
description='New description'
file='new_file.csv',
media_type=MediaType.CSV
)
fsq-data-sdk update-dataset \
--dataset-id <id> \
--media-type <media_type> \
--file <path> \
--name <name> \
--description <description>
curl -X PUT https://data-api.foursquare.com/v1/datasets/<uuid>/data HTTP/1.1 \
-H 'Authorization: Bearer <token>'
-H 'Content-Type: text/csv' \
--data-binary '@/path/to/my_dataset.csv'
curl --request PUT \
--url https://data-api.foursquare.com/v1//v1/datasets/<uuid> \
--header 'accept: application/json' \
--header 'content-type: application/json' \
--data '
{
"name": "New name",
"description": "New description"
}
delete_dataset
Delete a dataset record by id. This will also delete any data associated with the dataset.
Warning
This operation cannot be undone. If you delete a dataset currently used in one or more maps, the dataset will be removed from those maps, possibly causing them to render incorrectly.
data_sdk.delete_dataset(dataset: Union[Dataset, str, UUID]) -> None
fsq-data-sdk delete-dataset --dataset-id <uuid>
DELETE https://data-api.foursquare.com/v1/datasets/<uuid> HTTP/1.1
Parameters
Parameter | Type | Description |
---|---|---|
dataset | string or dataset object | The UUID or dataset object of the dataset to delete. |
Response
A message indicating if deletion was successful.
{
"message": "string"
}
Example
datasets = data_sdk.list_datasets()
dataset = datasets[0]
data_sdk.delete_dataset(dataset)
fsq-data-sdk delete-dataset --dataset-id <uuid>
curl -X DELETE https://data-api.foursquare.com/v1/datasets/<uuid> \
-H 'Authorization: Bearer <token>'
generate_vectortile
Create Vector Tiles by specifying a source GeoJSON (.geojson), CSV .csv
or FlatGeobuf (.fgb
) file, and optionally, a target dataset.
For GeoJSON and FlatGeoBuf source files geometry can be read automatically, but source latitude/longitude columns must be specified for CSV source files
Method
generate_vectortile(
self,
source: Dataset | str | UUID,
*,
target: Dataset | str | UUID | None = None,
source_lat_column: str | None = None,
source_lng_column: str | None = None,
attributes: List[str] | None = None,
exclude_all_attributes: bool | None = None,
tile_size_kb: int | None = None,
) -> Dataset:
fsq-data-sdk generate-vectortile \
--source <Source URL of the dataset> \
--target <Optional target dataset> \
--source-lat-column lat
--source-lng-column lng
POST https://data-api.foursquare.com/v1/datasets/vectortile
Parameters
Parameter | Type | Description |
---|---|---|
source | string | Required. The source URL of the dataset. |
target | string | Optional target dataset to overwrite. |
source_lat_column | string | Source lat column (CSV only). |
source_lng_column | string | Source lng column (CSV only). |
attributes | List[string] | Attributes to keep. |
exclude_all_attributes | bool | Whether to exclude all attributes. |
tile_size_kb | int | Maximum tile size (in kilobytes). |
Body
Vector tile parameters encoded as a JSON blob.
{
"source": "source-dataset-uuid",
"target": "target-dataset-uuid",
"sourceLatColumn": "lat",
"sourceLngColumn": "lng",
"attributes": ["foo", "bar"],
"tileSizeKb": 2000
}
Response
New dataset
record.
Examples
data_sdk.generate_vectortile(
source="source_dataset_uuid",
target=None,
source_lat_column="lat",
source_lng_column="lng",
attributes=["foo", "bar"].
tile_size_kb=2000
)
fsq-data-sdk create-external-dataset \
--source "source-dataset-uuid" \
--target "optional-target-uuid" \
--source-lat-column lat \
--source-lng-column lng \
-y foo -y bar \
--tile-size-kb 2000
curl --request POST \
--url https://data-api.foursquare.com/v1/datasets/vectortile \
--header 'accept: application/json' \
--header 'content-type: application/json' \
--data '
{
"source": "source-dataset-uuid",
"target": "target-dataset-uuid",
"sourceLatColumn": "lat",
"sourceLngColumn": "lng",
"attributes": ["foo", "bar"],
"tileSizeKb": 2000
}
'
list_data_connectors
Get all data connectors for the authenticated user or organization.
list_data_connectors(
self, *, organization: bool = False
) -> List[DataConnector]:
fsq-data-sdk list-data-connectors
GET https://data-api.foursquare.com/v1/data-connections HTTP/1.1
Keyword Arguments
Parameter | Type | Description |
---|---|---|
organization | boolean | If True , list data connectors for organization of authenticated user. |
Response
Returns a list of data connector objects associated with the user, or if specified, the organization.
Example:
[DataConnector(id="...", name="connector", description="desc", type=DataConnectorType.POSTGRES, ...)]
Example
Find examples for both individual and organization requests below.
# List data connectors associated with user account
data_connectors = data_sdk.list_data_connectors()
# List data connectors associated with organization
data_connectors = data_sdk.list_data_connectors(organization=True)
fsq-data-sdk list-data-connectors
fsq-data-sdk list-data-connectors --organization
GET https://data-api.foursquare.com/v1/data-connections HTTP/1.1
GET https://data-api.foursquare.com/v1/data-connections/for-organization HTTP/1.1
list_datasets
Get all dataset records for the authenticated user.
datasets = data_sdk.list_datasets()
fsq-data-sdk list-datasets
GET https://data-api.foursquare.com/v1/datasets HTTP/1.1
Get all map records for the organization of the authenticated user.
datasets = data_sdk.list_datasets(organization=True)
fsq-data-sdk list-datasets --organization
GET https://data-api.foursquare.com/v1/datasets/for-organization HTTP/1.1
Keyword Parameters
Parameter | Type | Description |
---|---|---|
organization | boolean | If True , list dataset records for organization of authenticated user. |
Response
List of dataset records:
{
"items": [
{
"id": "string",
"name": "string",
"createdAt": "2021-02-03T23:51:14.527Z",
"updatedAt": "2021-02-03T23:51:14.527Z",
"description": "string",
"isValid": true
}
]
}
For non-enterprise users, organization=True
will cause the request to fail with:
403: Insufficient permission level to perform this action
Example
datasets = data_sdk.list_datasets()
fsq-data-sdk list-datasets
curl https://data-api.foursquare.com/v1/datasets -H 'Authorization: Bearer <token>'
Hex Tile Functions
This section contains detailed reference documentation covering the Data SDK's Hex Tile functions.
To view each function with a brief description and an example, visit the Hex Tile functions documentation.
generate_hextile
Renamed from create_hextile
Data can be processed into Hex Tiles using the Studio Data SDK.
# hextile a file
data_sdk.generate_hextile(
source: Union[Dataset, str, UUID],
*,
target: Optional[Union[Dataset, str, UUID]] = None,
source_hex_column: Optional[str] = None,
source_time_column: Optional[str] = None,
time_intervals: Optional[Sequence[Union[TimeInterval, str]]] = None,
target_res_offset: Optional[int] = None,
_tile_mode: Optional[Union[TileMode, str]] = None,
output_columns: Optional[
Sequence[Union[dict, HexTileOutputColumnConfig]]
] = None,
_positional_indexes: Optional[bool] = None,
) -> Dataset
fsq-data-sdk generate-hextile
--source str,
--target str | None,
--source-hex-column str | None,
--source-lat-column str | None,
--source-lng-column str | None,
--source-time-column: str | None,
--time-interval: List[str],
--output-column List[str],
--finest-resolution int | None
POST https://data-api.foursquare.com/internal/v1/datasets/hextile HTTP/1.1
Python
You can access the Studio Data SDK with Python to process your dataset into Hex Tiles.
generate_hextile
function
generate_hextile
functionUse the generate_hextile
function to create Hex Tiles from a dataset.
Positional Arguments
Argument | Type | Description |
---|---|---|
source | string | Required. Dataset record or UUID of the dataset to convert to Hex Tile. |
Keyword Arguments
Argument | Type | Description |
---|---|---|
target | string | Dataset record or UUID of an existing Hex Tile dataset to overwrite. |
source_hex_column | string | Name of the hex (h3) column in the source dataset. Hex column must contain hex indexes as string . |
source_lat_column | string | Name of the latitude column in the source dataset. |
source_lng_column | string | Name of the longitude column in the source dataset. |
finest_resolution | int | Finest resolution for the data hexes within a tile (when creating a tileset from lat/lng columns). |
source_time_column | string | Name of the time column in the source dataset, or null if non-temporal data. |
time_intervals | string array | Array of time intervals to generate for temporal datasets. Accepted intervals: ["YEAR"] , ["MONTH"] , ["DAY"] , ["HOUR"] , ["MINUTE"] , ["SECOND"] . |
output_columns | object array | Object array used to aggregate a new data column during Hex Tile generation. |
output_columns.source_column | string | Column name in the source dataset. |
output_columns.target_column | string | Column name in the target hex tile dataset. |
output_columns.agg_method | string | Method to aggregate the data column with when generating coarser tile resolutions. Accepted methods: "sum" , "count" , "min" , "max" , "mean" , "median" , "mode" . Defaults to "sum" for numeric columns. |
output_columns.dtype | string | Data type to encode the column in the Hex Tile dataset. Example values include "float32" , "uint8" , "int64" . |
target_res_offset | int | Optional integer controlling the depth of the tile hierarchy. |
tile_mode | string | Experimental. "dense" , "sparse" , or "auto" . Defaults to "auto" . |
positional_indexes | boolean | Experimental. Enables the positional indexes encoding feature. |
HTTP API
You can access the Studio Data API through the HTTP REST API to process your dataset into Hex Tiles.
Headers
Header | Description |
---|---|
Content-Type | Must be application/json . This header is required. |
Body
The body of the request should be the parameters encoded as a JSON blob.
Parameter | Type | Description |
---|---|---|
source | string | Required. Dataset record or UUID of the dataset to convert to Hex Tile. |
target | string | Dataset record or UUID of an existing Hex Tile dataset to overwrite. |
sourceHexColumn | string | Name of the hex (h3) column in the source dataset. Hex column must contain hex indexes as string . |
sourceLatColumn | string | Name of the latitude column in the source dataset. |
sourceLngColumn | string | Name of the longitude column in the source dataset. |
finestResolution | int | Finest resolution for the data hexes within a tile (when creating a tileset from lat/lng columns) |
sourceTimeColumn | string | Name of the time column in the source dataset, or null if non-temporal data. |
timeIntervals | string array | Array of time intervals to generate for temporal datasets. Accepted intervals: ["YEAR"] , ["MONTH"] , ["DAY"] , ["HOUR"] , ["MINUTE"] , ["SECOND"] . |
outputColumns | object array | Object array used to aggregate a new data column during Hex Tile generation. |
outputColumns.sourceColumn | string | Column name in the source dataset. |
outputColumns.targetColumn | string | Column name in the target hex tile dataset. |
outputColumns.aggMethod | string | Method to aggregate the data column with when generating coarser tile resolutions. Accepted methods: "sum" , "count" , "min" , "max" , "mean" , "median" , "mode" . Defaults to "sum" for numeric columns. |
outputColumns.dtype | string | Data type to encode the column in the Hex Tile dataset. Example values include "float32" , "uint8" , "int64" . |
targetResOffset | int | Optional integer controlling the depth of the tile hierarchy. |
tileMode | string | Experimental. "dense" , "sparse" , or "auto" . Defaults to "auto" . |
positionalIndexes | boolean | Experimental. Enables the positional indexes encoding feature. |
Response
Upon completion, you will receive a response containing the metadata of your dataset.
{
"id": "string",
"name": "string",
"createdAt": "2021-02-04T00:17:38.652Z",
"updatedAt": "2021-02-04T00:17:38.652Z",
"description": "string",
"isValid": true
}
Dataset Location
Once processed, your dataset will be stored on your Studio Cloud account. You may download it using the download dataset function in the Data SDK.
Check Hex Tiling Status via API
You can find the status of the Hex Tile dataset in the API.
Retrieve the dataset's metadata, then find one of three codes in the dataStatus
field:
Status code | Description |
---|---|
pending | The tiling process is still running. |
ready | The tiling process is complete and the Hex Tiles can be used. |
error | The tiling process has failed. |
Examples
# Import the HexTileOutputColumn Model from Studio Data SDK
data_sdk.generate_hextile(
source="0b341204-1a76-4c1e-82a1-a856f28c522e",
source_time_column = "time",
source_lat_column = "lat",
source_lng_column = "lon",
finest_resolution = 9,
time_intervals= ["HOUR"],
output_columns= [
{
"source_column": "precip_kg/m2",
"target_column": "precip_sum",
"agg_method": "sum"
}
]
)
fsq-data-sdk generate-hextile
--source e32f527e-0917-40aa-955f-8d55105f9673
--source-lat-column Latitude
--source-lng-column Longitude
--output-column '{"sourceColumn":"Magnitude", "targetColumn":"Avg Magnitude", "aggMethod":"mean"}'
--output-column '{"sourceColumn":"Depth", "targetColumn":"Max Depth", "aggMethod":"max"}'
--finest-resolution 5
curl -X POST https://data-api.foursquare.com/internal/v1/datasets/hextile \
-H 'Authorization: Bearer <token>' \
-H 'Content-Type: application/json' \
--data-raw '{
"source": "<source_dataset_id>",
"sourceHexColumn": "hex",
"sourceTimeColumn": "datestr",
"timeIntervals": ["DAY"],
"targetResOffset": 4,
"outputColumns": [
{
"sourceColumn": "metric",
"targetColumn": "metric_sum",
"aggMethod": "sum",
"dtype": "uint16"
}
]
}
enrich
Datasets can be enriched with Hex Tiles using the Studio Data SDK.
# enrich a dataframe or existing dataset
data_sdk.enrich(
dataset: Union[pd.DataFrame, Dataset, UUID, str],
source_id: UUID,
source_column: str,
*,
h3_column: Optional[str] = None,
lat_column: Optional[str] = None,
lng_column: Optional[str] = None,
time_column: Optional[str] = None,
) -> pd.DataFrame
POST https://data-api.foursquare.com/internal/v1/query HTTP/1.1
HTTP API
Enrichment is provided through the Query API, which can support a range of flexible queries. The following parameters describe a simple enrichment query.
Headers
Header | Description |
---|---|
Content-Type | Must be application/json . This header is required. |
Accept | May be _/_ , application/json , text/csv , or application/vnd.apache.arrow.file . The response dataset will have the corresponding data format (by default, text/csv ). |
Body
The body of the request should be the parameters, encoded as a JSON blob.
Parameters
Parameter | Type | Required | Description |
---|---|---|---|
type | string | Yes | Use enrich to select the enrich process. |
sourceId | string | Yes | The UUID of the Hex Tile dataset for enrichment. |
sourceColumn | string or string array | Yes | The label of the Hex Tile column for enrichment, or an array of labels for multiple columns. |
targetType | string | Yes | Must be either "H3" or "LATLNG" . |
column | string | Yes for type H3 | Column in target dataset containing H3 addresses. |
latColumn | string | Yes for type LATLNG | Column in target dataset containing latitude values. |
lngColumn | string | Yes for type LATLNG | Column in target dataset containing longitude values. |
timeColumn | string | Yes for temporal datasets. | Column in target dataset containing time values in epoch timestamp or ISO-8601 format. |
timeInterval | string | No | Time interval to use for enrichment. The target time interval must be available in the Hex Tile dataset. Accepted methods: YEAR , MONTH , DAY , and HOUR . Defaults to the finest available interval. |
input | string array | Yes | Array containing a single object describing the target dataset, in the form {"type": "dataset", "uuid": <uuid>} |
Python
enrich
function
enrich
functionPositional Arguments
Argument | Type | Required | Description |
---|---|---|---|
dataset | string | Yes | Pandas DataFrame , Dataset record, or UUID of the dataset to hextile. |
source_id | string | Yes | UUID of the Hex Tile dataset to use for enrichment. |
source_column | string | Yes | Label of the Hex Tile column to use for enrichment. |
Keyword Arguments
Argument | Type | Required | Description |
---|---|---|---|
h3_column | string | Yes for H3 data. | Column in target dataset with H3 addresses. |
lat_column | string | Yes for lat/lng data. | Column in target dataset with latitude values. |
lng_column | string | Yes for lat/lng data. | Column in target dataset with longitude values. |
time_column | string | Yes for temporal data. | Column in target dataset with time values in epoch timestamp or ISO-8601 format. |
Response
Upon completion, you will receive the enriched dataset in CSV, JSON, or Arrow format depending on the Accept
header.
Examples
data_sdk.enrich(
dataset="my-dataset-uuid",
source_id="my-hex-tile-uuid",
source_column="some_value",
lat_column="lat",
lng_column="lng",
time_column="date",
)
curl -X POST https://data-api.foursquare.com/internal/v1/datasets/hextile \
-H 'Authorization: Bearer <token>' \
-H 'Content-Type: application/json' \
-H 'Accept: text/csv' \
--data-raw '{
"type": "enrich",
"input": [
{
"type": "dataset",
"uuid": "my-target-uuid"
}
],
"sourceId": "my-hex-tile-uuid",
"sourceColumn": "some_value",
"timeColumn": "date",
"targetType": "LATLNG",
"latColumn": "lat",
"lngColumn": "lng"
}'
extract
You may specify an area of Hex Tiles (represented by a GeoJSON geometry) to extract. Returns a geopandas H3 dataframe.
# extract hex tiles
data_sdk.extract(
self,
source_id: Union[str, UUID],
geojson: Dict,
*,
source_column: Optional[Union[str, List[str]]] = None,
res: Optional[int] = None,
h3_column: Optional[str] = None,
time_column: Optional[str] = None,
time_interval: Optional[Union[Dict, TimeInterval]] = None,
) -> pd.DataFrame:
POST https://data-api.foursquare.com/internal/v1/query HTTP/1.1
Note: Extracting Hextiles makes use of Studio's Query API.
Please contact us if you wish to use the Query API to extract Hex Tiles.
Python
Use the tile_extract
function to extract a region of Hex Tiles from a Hex Tile dataset.
Positional Arguments
Argument | Type | Description |
---|---|---|
source_id | string | Required. Dataset UUID of the dataset to convert to Hex Tile. |
geojson | dict | Required. A geojson geometry of the area to extract. |
Keyword Arguments
Argument | Type | Description |
---|---|---|
source_column | string | Column in Hex Tile dataset. |
res | int | H3 resolution of data to extract. |
h3_column | string | Name of the output column containing H3 indexes. Default: h3_<res> |
time_column | string | Name of the output column containing time indexes. Default: date |
time_interval | string array | Time interval to extract. Accepted intervals: "YEAR" , "MONTH" , "DAY" , "HOUR" , "MINUTE" , "SECOND" . |
Response
Upon completion, you will receive a response containing a Pandas dataframe with the extracted dataset.
# Extract Hex Tiles within a specified GeoJSON geometry
extracted_dataset = data_sdk.extract(
source_id="<UUID>",
geojson="
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[0, 0],
[0, 10],
[10, 0],
[0, 0]
]
]
}
};,
source_column="hextile_column",
res=8,
h3_column = "h3_8",
time_column = "year",
time_interval = "YEAR"
)
Updated 6 months ago